




generalized to verification of any type of objects. For in-
stance, given two images of animals, we can verify whether
both images are for cats by running each of them separately
through a cat detector trained on images of cats vs non-cats,
then combine the detector’s confidences. This is inherently
different from using a verification classifier which receives
a pair of images and classifies them jointly as being both
cats or not. The latter classifier would be trained on cross-
image features extracted from cat-cat pairs vs cat-noncat
pairs, which is more discriminative for object similarity and
dissimilarity.

Our cross-image features are embarrassingly simple, we
use a large bank of normalized correlation filters between
patches across the pair of images at different sizes, loca-
tions, and orientations. Additionally, we use Haar-like fea-
tures similar to the ones used in [20], however, obtained
across the pair of images. Consequently, we use AdaBoost
to weight and select the most discriminative filters. Our
method is derived from Viola and Jones face detector [20];
however, instead of using filters within an individual image,
we use across-image filters such that we capture the relation
between the pair of images, rather than capturing individual
image features. It is important to note that cross-image fea-
tures are extracted from two images in order to encode their
similarity. This is inherently different from relating pairs or
triplets of features extracted from the same image, which
is typically used to encode the spatial relations between the
features as in for example [6] and [14]. The rest of the pa-
per is organized as follows: In the next section, we present
our proposed cross-image features, followed by AdaBoost
classifier training. The experiments and the results are de-
scribed in Section 3. Finally, Section 4 concludes the paper.

2. Proposed Method

Our cross-image features for face verification are based
on the simple rectangle filters presented by Viola and Jones
[20]. However, we extend the features to operate across
pairs of images rather than within individual images. While
these features seem simple, the experiments demonstrate
their superior discriminative capabilities in face verification.
Figure 1 illustrates the difference between the features of
[20] and ours. We capture the differences between the two
images, instead of the variation within the image. In partic-
ular, given a pair of face images I1 and I2, which we aim to
classify as belonging to the same identity or not, let ri de-
note a box i positioned at location (xi, yi), with width and
height (wi, hi), and orientation θi. We define two types of
filters:

• Haar-like cross-image filters: This type of filter com-
pares the box rectangular sum between the image pair
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Figure 1. The top row shows the four rectangle features from [20].
The bottom row shows the corresponding cross-image features,
which are similar to the original Haar-like features except that the
white part of the filters are obtained from the second image in order
to capture the difference between the two images in the pair.

fi =
∑

(x,y)∈ri

I1(x, y) −
∑

(x,y)∈ri

I2(x, y). (1)

We use four versions of this type similar to [20]; how-
ever, the features are obtained across the image pair
as shown in figure 1. The black part of the rectangle
boxes is obtained from the first image, while the white
part is obtained from the second.

• NCC cross-image filters: This type of filter computes
the normalized cross correlation (NCC) of the rectan-
gular box between the image pair

fj =
∑

(x,y)∈ri

(I1(x, y) − Ī1)(I2(x, y) − Ī2)

σ1σ2
(2)

We use a single version of this feature where the NCC
is obtained between corresponding patches in the pair at the
same location (i.e. both black and white boxes are placed at
the same spatial coordinates in the pair). Note that since the
correlation is normalized, these features are robust against
illumination changes.

We quantize all possible positions, sizes, and orienta-
tions for each of the filters and obtain about 25, 000 fea-
tures for each pair of images. Calculating the cross-image
features for thousands of image boxes is time consuming.
Therefore, in order to rapidly compute the features, we
adopt the integral image method [20] and apply it on the
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cross-image features. The integral image δ for an image I
is defined as

δ(x, y) =
∑

x′≤x,y′≤y

I(x′, y′). (3)

Each box summation in I can be obtained using four an-
chors from δ(x, y) similar to [20]. For the Haar-like cross-
image filters, we first obtain the integral image for each of
the images in the pair. Consequently, every box summation
is obtained from its corresponding integral image. On the
other hand, in order to use the integral image for efficient
computation of the NCC cross-image features, we first ex-
pand equation 2 and apply a few simple operations to refor-
mulate it as

fj =
n
∑
I1I2 −

∑
I1

∑
I2√

(n
∑
I21 −

∑2
I1)(n

∑
I22 −

∑2
I2)

, (4)

where the summation is over all the pixels in the box filter,
and n is the number of pixels. Consequently, we obtain five
integral images corresponding to each of the terms, in par-
ticular, (I1, I2, I1I2, I

2
1 , I

2
2 ). Using these internal images,

each of the summation terms in equation 4 is efficiently
computed using four anchors from the corresponding inte-
gral image.

In the training process, we use AdaBoost to select a sub-
set of features and construct the classifier. In each round,
the learning algorithm chooses from a heterogenous set of
filters, including the Haar-like filters and the NCC filters.
The AdaBoost algorithm also picks the optimal threshold
for each feature. The output of AdaBoost is a classifier
which consists of a linear combination of the selected fea-
tures. For details on AdaBoost, the reader is referred to
[20].

3. Experiments
We extensively experimented on the proposed ideas us-

ing three standard datasets: Extended Yale B [4], CMU PIE
[1], and Labeled Face in the Wild (LFW) [10]. Figure 2
shows the the highest weighted rectangle features obtained
after boosting of the cross-image features for theses three
datasets. Figure 3 shows example verification results from
the three datasets. In all experiments, we report our perfor-
mance using the accuracy at EER (100%-ERR) similar to
[17], where EER is the equal error rate, which is the aver-
age value of the false accept rate (FAR) and the false reject
rate (FRR).

• Extended Yale B: This is a standard face database
consisting of 2414 frontal-face images of 38 individ-
uals. The face images are normalized to the size of

Figure 2. The highest weighted rectangle features obtained after
Boosting for Extended Yale B dataset (top), LFW dataset (middle),
and CMU PIE dataset(bottom).

192 × 168. These face images are captured under dif-
ferent laboratory-controlled lighting conditions [12].
There are about 64 images for each individual. We
follow a standard experimental setup similar to [23]
and randomly select half of the images of each sub-
ject for training and the other half for testing. Figure
4 top left shows the obtained ROC curve for Extended
Yale B dataset. We compared our method with state-
of-the-art methods in table 1 and figure 4. It is clear
that our cross-image features outperforms the other ap-
proaches.

Table 1. Face verification results for Extended Yale B and CMU
PIE datasets.

Method Accuracy at EER (%)
YaleB PIE Illum PIE Light

Heusch et al. [8] 73.64 84.85 89.63
Zhang et al. [24] 85.09 79.40 82.77
WLBP-HS [5] 88.46 86.80 90.07
WLFuse [5] 91.25 86.89 90.83
Our method 95.70 92.49 98.61

• CMU PIE: This dataset contains 68 subjects with
13 different poses and 4 different expressions un-
der 43 different lighting conditions. We follow the
experiment setup in [5] and use two subsets from
this database, namely, “illumination” (without ambi-
ent light) and “lighting” (with ambient light). Similar
to [5], in the illumination subset we use 3 images per
person for training, and another 8 images with different
illumination conditions are randomly selected for test-
ing. In the lighting subset, we use 5 images for train-
ing and 10 for testing. Table 1 shows the performance
of our method compared to several other approaches.
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Figure 3. Example face verification results from Extended Yale B,
LFW, and CMU PIE datasets.

Additionally, figure 4 bottom left and right shows the
obtained ROC curve for CMU PIE lighting (left) and
illumination (right).

• Labelled Faces in the Wild: LFW dataset contains
13233 face images collected from the web. The
database includes 5749 individuals, 1680 of them have
two or more distinct photos. This dataset is very chal-
lenging due to the variation in illumination and pose;
therefore, it is useful for comparing the effectiveness
of different low-level feature descriptors [17]. In our
experiments, we use the aligned version of LFW, and
follow a standard 10-fold cross validation suggested
by the authors of [10]. Figure 4 top right shows the
obtained ROC curve for LFW dataset. Moreover, table
2 compares our cross-image features with the state-of-
the-art feature descriptors. It is clear that our method is
robust to the challenging factors in LFW, and therefore
outperforms other features.

Table 2. Comparison of the accuracy at EER for different feature
descriptors on LFW dataset

Feature TPLBP [5] SIFT look-alike [17] ours
Accuracy(%) 69.2 69.1 70.8 75.4
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Figure 4. The performance of our method using the highest
weighted cross-image features. In the ROC curves, we compare
our method with LBP + Euclidean distance, where the face simi-
larity is measured by the distance between LBP features extracted
from the faces. Additionally, we compare our performance with
the methods from [6] and [15].

4. Conclusion
We proposed a new robust features for face verification

based on cross-image similarity. Our approach extracts sim-
ple rectangle features from the pair of images jointly, thus
capturing discriminative properties of the pair. Through ex-
periments, we demonstrated the power of our proposed ap-
proach on challenging datasets. In the future, we will ex-
plore the extension of our cross-image features for general
object verification problem.
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